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Abstract 30 

Evapotranspiration (ET) is an important component of the water balance system in the “Asian water tower” 

region, the Tibetan Plateau (TP). However, accurately monitoring and understanding the spatial and temporal 

variability of the ET components (soil evaporation Es, canopy transpiration Ec, and intercepted water evaporation Ew) 

on the TP remains gravely challenging due to the paucity of observational data for this remote area. In this study, the 

37 years (1982–2018) of monthly ET component data for the TP were produced using the MOD16-STM model, 35 

which uses the recently available soil properties, meteorological conditions, and remote sensing datasets. The 

estimated ET results correlate very well with the measurements from nine flux towers, with a low root mean square 

error of 13.48 mm/month, mean bias of 2.85 mm/month, coefficient of determination of 0.83, and index of agreement 

of 0.92. The annual average ET for the entire TP (specified as elevations higher than 2500 m) is about 0.93 ± 0.037 

Gt/year. The main contribution of the ET on the TP comes from the soil, with the Es accounting for more than 84% 40 

of the ET. During the study period, the ET exhibited a significant increasing trend, with rates of about 1–4 mm/year 

(p < 0.05), over most parts of the central and eastern TP and a significant decreasing trend, with rates of −3 to −1 

mm/year, over the northwestern TP. The rate of increase in the ET on the TP over the past 37 years was around 0.96 

mm/year. The increase in the ET over the entire TP from 1982 to 2018 can be explained by the warming and wetting 

trend of the climate on the TP during this period. The MOD16-STM ET data exhibited an acceptable performance 45 

over the TP compared with previous results. MOD16-STM ET can accurately estimate actual ET for research in water 

resource management, drought monitoring and ecological change. The whole datasets are freely available at the 

Science Data Bank (http://doi.org/10.11922/sciencedb.00020, Y. Ma*, X.Chen*, L. Yuan, 2021) and the National 

Tibetan Plateau Data Center (TPDC) (http://doi.org/10.11888/Terre.tpdc.271913, L. Yuan, X.Chen*, Y. Ma*, 2021). 

 50 
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1. Introduction 60 

The Tibetan Plateau (TP) (24–40°N, 70–105°E) is known as the Asian water tower (Immerzeel et al., 2020; Yao 

et al., 2012; Xu et al., 2019) due to its unique geographical and ecological characteristics. Evapotranspiration (ET) is 

a very important component of the water balance of the Asian water tower. The land cover on the TP is predominantly 

grassland and sparse vegetation or bare soil (with coverages of >47% and >33%, respectively) based on the Moderate 

Resolution Imaging Spectroradiometer (MODIS) landcover (MCD12C1) dataset (Fig. 1c). Most of the TP is arid or 65 

semi-arid. The TP is experiencing accelerated changes in its hydrological cycle due to global warming (Yang et al., 

2014; Kuang et al., 2016; Zohaib et al., 2017). Meanwhile, accurate monitoring of the spatial and temporal variability 

of the ET remains challenging due to the remote nature of the TP. In addition, how the ET over the TP will change 

under the background of global warming is critical for analyzing the impacts of changes in the water balance of the 

Asian water tower on the local people’s lives. 70 

In the last few years, a wide variety of ET datasets have been compiled to improve estimations of the ET on the 

TP, i.e., the complementary relationship (CR) model (Ma et al., 2019; Wang et al., 2020), the surface energy balance 

system (SEBS) model (Chen et al., 2014, 2021; Zhong et al., 2019; Han et al., 2017, 2021), and the Penman–Monteith 

model with remote sensing (RS-PM) (Wang et al., 2018; Song et al., 2017; Chang et al., 2019; Ma et al., 2022). 

Others have used reanalysis datasets (Shi et al., 2014; Dan et al., 2017; Yang et al., 2019; De Kok et al., 2020), pan 75 

observations (Xie et al., 2015; Zhang et al., 2018; Yao et al., 2019), and eddy-covariance (EC) (Shi et al., 2014; You 

et al., 2017; Yang et al., 2019; Ma et al., 2020) to study the ET on the TP. However, there is still a lack of longer-term 

remote sensing ET products for the TP, and there is considerable variance among the ET products for the TP (Peng 

et al., 2016; Baik et al., 2018; Li et al., 2018; Khan et al., 2018). Most of these ET products perform poorly in areas 

with sparse vegetation or arid to semi-arid climates, as well as in areas with inadequate water supplies. This is mainly 80 

due to the poor judgment of the ET dominant factors and the accuracy of the ET driving data used (Zhang et al., 2010; 

Li et al., 2014b; Song et al., 2017; Baik et al., 2018; Li et al., 2018; Khan et al., 2018). The MOD16 algorithm also 

separately estimates the canopy transpiration (Ec), soil evaporation (Es), and interception (Ei) (Mu et al., 2011; Zhang 

et al., 2010), and it has been used for global ET estimations. However, the MOD16 ET product has some problems 

on the TP. The poor performance of the MOD16 model in the arid to semi-arid areas of the TP is due to the fact that 85 

the algorithm does not take into account the dominant role of the topsoil information (topsoil texture and topsoil 

moisture (SM)) in controlling the evaporation processes (Yuan et al., 2021). Although previous studies have obtained 

accurate ET estimates after improving the canopy conduction algorithm in the MOD16 model (Leuning et al., 2008; 

Zhang et al., 2010; Li et al., 2015; Zhang et al., 2016, 2019; Gan et al., 2018), it is also difficult to separate and 
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validate the ET components effectively. Interestingly, there are significant differences in the global and regional 90 

contributions of the Es, Ec, and Ei even if the total ET estimates are consistent across different products (Lawrence et 

al., 2007; Blyth and Harding, 2011; Miralles et al., 2016). The MOD16 model (MOD16-STM) was enhanced by 

redefining the Es and Ec module with the help of EC observations from several flux sites on the TP (Yuan et al., 2021). 

The MOD16-STM model was validated at more independent stations (Appendix B). The Penman–Monteith–Leuning 

(PML) algorithm was used to test the good performance of the ET estimation on the TP (Wang et al., 2018; Ma et al., 95 

2022). However, the effects of the SM on the evaporation resistance and stomatal conductance are not included in 

this model. Furthermore, the recent ET dataset (Han et al., 2021) based on the energy balance method does not cover 

a long enough time period for climate trend analysis (about 18 years, 2001–2018), and it does not estimate the ET 

components. 

Es may account for the vast majority of ET in sparsely vegetated areas, especially in arid and semi-arid areas 100 

where bare soil areas are relatively large (Wilcox et al., 2003; Kool et al.,2014; Wang et al., 2018; Ma et al., 2022). 

Previous studies have pointed out that 20% to 40% of the global ET comes from Es (Lawrence et al., 2007; 

Schlesinger and Jasechko, 2014), which is a fast process influenced by shallow surface water (Koster and Suarez, 

1996) and mainly controlled by soil vapor diffusion (Good et al., 2015; Yuan et al., 2022). Therefore, accurate 

quantification and separation of the Es could help improve our understanding of the water and energy cycles on the 105 

TP. Nevertheless, quantifying the ET and its components remains a difficult task since it is controlled by the 

atmospheric demand, soil moisture conditions, and complex interactions between typical inhomogeneous vegetation 

and soil properties (Merlin et al., 2016; Wu et al., 2017; Philips et al., 2017; Lehmann et al., 2018). In this study, the 

MOD16-STM model, with its drawbacks fully in mind, was used to estimate a more accurate long-term ET (and its 

components) dataset (Yuan et al., 2021). 110 

Currently, there are still no long-term variations in the ET estimation across the TP that incorporate soil 

information. Hence, based on the advantage of the MOD16-STM model for estimating ET on the TP, the goals of this 

study were (1) to develop a 37-year (1982–2018) 0.01 × 0.01 monthly ET dataset for the TP; and (2) to quantify the 

spatial distributions and spatiotemporal variability of the ET and its components over the TP. 

2. Materials and methods  115 

2.1 Study area 

The Tibetan Plateau (25-40°N, 74-104°E) is about 2.5 million km2 of land above 2,500 meters in altitudes) (Fig. 

1a). It is the largest landform unit in Eurasia and mainly includes hyper-arid, arid, semi-arid, and sub-humid climate 

zones (Fig. 1b). The land cover types are mainly divided into mixed forest, grassland, bare soil, and glaciers and snow 
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(Fig. 1c). The topsoil is mainly covered with sandy loam, loam, and clay (Fig. 1d). The annual average temperature 120 

is about −3.1°C to 4.4°C. The average annual precipitation gradually increases from less than 50 mm in the northwest 

to more than 1000 mm in the southeast, and most of the precipitation is concentrated in the summer (Ding et al., 

2017). The TP has experienced a significant warming trend over past decades (Chen et al., 2015), leading to 

significant changes in its environment, including increased precipitation; decreased wind speed, snow days, and 

radiation; and the thawing of permafrost, melting of glaciers, and greening of vegetation (Kang et al., 2010; Yao et 125 

al., 2012; Yang et al., 2014; Kuang et al., 2016; Bibi et al., 2018). 

 

Figure 1 Maps of the (a) topography, (b) climate zones, (c) land cover types, and (d) soil textures in the study area. 

The red dots indicate the flux site locations. 

2.2 How to generate a long-term series of monthly ET products？ 130 

2.2.1 Description of generating MOD16-STM ET in detail 

In this study, a newly generated set of long-term series of monthly ET products is estimated based on the 

MOD16-STM model. The performance of the model is verified by the ET measurements at the flux station (Appendix 

A). The workflow for calculating the monthly ET using the MOD16-STM model and driving datasets is presented in 

Fig. 2.  135 
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Figure 2 Workflow of the MOD16-STM evapotranspiration product. 

The MOD16-STM model calculates the ET (or components) based on the Penman–Monteith equation as follows: 

 
(1) 

 
(2) 

 
(3) 

The ET is the sum of the components. Where Rn is the net radiation flux (W/m2); G0 is the soil heat flux (W/m2); ρa 

is the density of the air (kg/m3); Cp is the specific heat capacity of the air (J/kg/K); VPD is the vapor pressure deficit 140 

(hPa); and Δ is the slope of the saturated vapor pressure curve (hPa/K). γ is the psychrometric constant (hPa/K), and 

γ = Cp·Pa·Ma/(λ·Mw), where λ is the latent heat of vaporization(J/kg), and Ma and Mw are the molecular masses of dry 

air and wet air, respectively. ra is the aerodynamic resistance (s/m); and rs is the surface (or canopy) resistance (s/m). 

the vegetation cover fraction (fc) is estimated from the NDVI; and Fwet is the relative surface wetness. Rn and G0 are 
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calculated as follows: 145 

 (4) 

 (5) 

where σ is the Stefan-Boltzmann constant (5.67 × 10-8 W/m2/K4). Ic (=0.05) and Is (=0.315) are the ratios of the full 

vegetation cover (Su et al., 2002) and ground heat flux and net radiation for surfaces with bare soil (differentiated by 

NDVI < 0.25 in this study) (Yuan et al., 2021), respectively. When Ta < 5°C, photosynthesis and transpiration are not 

active, so Ec is not taken into account. When the LST or Ta < 0°C, the sublimation equation is obtained by rewriting 

the surface energy balance equation using the Clausius–Clapeyron equation for (liquid and frozen) water-vapor 150 

equilibrium. The following form of the P-M combination equation was used: 

 (6) 

Furthermore, the evaporation of surface water was not estimated in this study because previous studies have 

specifically studied the evaporation from the lakes on the TP in detail (Wang et al., 2020). 

Many previous studies have used the optimized surface conductance to estimate the Ec (Jarvis et al., 1976; Irmak 

and Mutiibwa, 2010; Zhang et al., 2010; Leuning et al., 2008; Li et al., 2013, 2015), and the surface model and the 155 

PM equation to estimate the Es (Sun et al., 1982; Camillo and Gurney, 1986; Sellers et al., 1996; Sakaguchi and Zeng, 

2009; Ortega-Farias et al., 2010; Tang et al., 2013). In this study, the aerodynamic resistance (ra) was calculated from 

the Monin-Obukhov similarity theory (MOST) (Thom, 1975), the roughness height of the momentum transfer (z0m) 

was derived from the canopy height (hc) following Chen et al. (2013), and the roughness heights of the water vapor 

transfer z0h were derived as follows Yang et al. (2008): 160 

 (7) 

where k is the von Karman’s constant (0.41), and zh and zm are the measurement heights of the Ta. ψm and ψh are the 

stability correction functions for the momentum and heat transfer, respectively. These two variables can be calculated 

using universal functions and the mathematical forms of the correction terms are as follows (Högström, 1996); 

Paulson, 1970). 
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 (8) 

 (9) 

For unstable conditions: 

 (10) 

 (11) 

For neutral conditions: 

 (12) 

In Eqs. (8–12), x = (1 − zm/L)0.25, xo = (1 − zom/L)0.25, y = (1 – 11.6zh/L)0.5, and yo = (1 – 11.6zoh/L)0.5. L = Ta·u*
2/(kgT*) 

and is defined as the Obukhov length (m), where g = 9.8 m/s2 and T* is the fractional temperature (K). T* = −(θs − 

θa)/(ln(zh/zoh) − ψh), where θs can be approximated using the LST and θa = Ta + zh·g/Cp is the potential temperature 170 

(K). The parameterization of u* and L has also been successfully applied on the TP (Chen, et al., 2013; Su et al., 2002). 

In Eq. (13), zoh is the roughness length of the heat transfer (m). An efficient parameterization scheme for zoh has been 

widely applied in remote sensing land surface fluxes and land surface models (LSMs) over the TP (Biermann 

et al., 2014; Chen et al., 2013; Ma et al., 2015). This scheme was also applied in this study: 

 (13) 

where v is the fluid kinematic viscosity (1.328·10-5·(P0/Pa)·(Ta/T0)1.754), where P0 = 1013 hPa and T0 = 273.15 K. The 175 

MOD16-STM model also considers the impacts of the soil classification and soil texture on the soil porosity (θsat), 

based on which the water saturation degree of surface soil (θ/θsat) is used to constrain the evaporation resistance (rs) 

and Es estimates as follows: 

 (14) 

where a and b are empirical parameters for different soil textures (Table B2 and Fig. B1). The θsat estimated 

considering the soil organic content (SOC) and gravel content can be obtained from the Soc-Vg scheme (Chen et al., 180 

2012; Zhao et al., 2018): 
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 (15) 

where θsat_m is the porosity of the mineral soil (θsat_m = 0.489 – 0.00126% sand) (Cosby et al., 1984), and θsat_sc is the 

porosity of the SOC (0.9 m3/m3 in this study) (Farouki, 1981; Letts et al., 2000). Vsoc and Vg are the volumetric 

fractions of the SOC and gravel, respectively, and they can be calculated as follows: 

 185 

 
(16) 

 
(17) 

in which the mineral particle density (ρp) and the bulk density of the organic matter (ρsoc) were defined as 2700 kg/m3 

and 130 kg/m3, respectively, and msoc and mg are the organic and gravel percentages in each soil layer, respectively. 

2.2.2 Input data 

The MOD16-STM model uses various remote sensing datasets, reanalysis datasets, and meteorological forcing 

datasets to estimate the monthly ET across the entire TP. To avoid spatial and temporal gaps in the final product, 190 

specific datasets were selected for use in this study (Table 1). The monthly meteorological forcing data from the 

China Meteorological Forcing Dataset (CMFD), with a 0.1° spatial resolution for 1982–2018 was obtained from the 

National Tibetan Plateau Data Center (Yang et al., 2010; He et al., 2020), including the wind speed (wind), air 

temperature (Ta), air specific humidity (q), air pressure (Pa), shortwave downward radiation (SWD), and longwave 

downward radiation (LWD). The land surface temperature (LST) and precipitation (Prec) of the ERA5-Land with a 195 

0.1° spatial resolution and monthly temporal resolution were obtained from European Centre for Medium-Range 

Weather Forecasts (ECWMF). The albedo (α) product with a 0.05° spatial resolution and 8-day temporal resolution 

was produced from the Global Land Surface Satellite (GLASS) (Liang et al., 2021). A long-term normalized 

difference vegetation index (NDVI) dataset with a 0.05° spatial resolution and daily temporal resolution were 

domwnload from the National Oceanic and Atmospheric Administration’s National Centers for Environmental 200 

Information (NOAA-NCEI) and was used to calculated the canopy height and LAI (Chen et al., 2013). A topsoil 

moisture (0–10 cm) dataset with a 0.25° spatial resolution and monthly temporal resolution was obtained from the 

Global Land Evaporation Amsterdam Model (GLEAM) (Miralles et al., 2011). This dataset has been validated to 

perform well across the TP (Liu et al., 2021). The upward surface longwave radiation (LWU) was derived from the 
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LST using the Stefan-Boltzmann Law. The emissivities (ε) of the mixed pixels were calculated using the specific 205 

emissivities of the vegetated (εv) and bare (εs) land surfaces, following Sobrino et al. (2004). The Harmonized World 

Soil Database v1.2 (HWSD) provides reliable soil texture and soil property data (Wieder et al., 2014). These data 

were used to calculate the soil evaporation resistance. The spatial resolutions of all of the inputs were interpolated to 

a 0.01° spatial resolution using a widely used bilinear interpolation method. 

Table 1. Input datasets used to calculate the ET on the Tibetan Plateau. 210 

 Data source Temporal resolution Availability Spatial resolution Method 

SWD CMFD 3 h 1979–2018 0.1° × 0.1° Reanalysis 

LWD CMFD  3 h 1979–2018 0.1° × 0.1° Reanalysis 

Ta CMFD  3 h 1979–2018 0.1° × 0.1° Reanalysis 

q CMFD  3 h 1979–2018 0.1° × 0.1° Reanalysis 

Wind speed CMFD  3 h 1979–2018 0.1° × 0.1° Reanalysis 

Pa CMFD  3 h 1979–2018 0.1° × 0.1° Reanalysis 

LST ERA5 Monthly 1981–2021 0.1° × 0.1° Reanalysis 

α GLASS 8 days 1981–2019 0.05° × 0.05° Satellite 

NDVI AVHRR Daily 1981–2019 0.05° × 0.05° Satellite 

SM GLEAM Monthly 1979–2019 0.25° x 0.25° Reanalysis 

Soil 

Properties 

HWSD / / 0.083°/1 km / 

2.3 Validation methods 

2.3.1 Point-scale validation 

The MOD16-STM model has been validated using 10 soil textures (loam, silt loam, sandy loam, sand, loamy 

sand, clay loam, silty clay loam, silty clay, and clay) for independent sites with three surface cover types (grassland, 

evergreen forest, and cropland) (Appendix A). Furthermore, the ET estimation needed to be validated through 215 

comparison with independent flux tower observations. In this study, hourly flux data measured by EC towers at nine 

stations (Table 2) of the China-Flux (Dang-Xiong site (DX), Hai-Bei site (HB), Yu et al., 2006; Zhang et al., 2019a), 

the Tibetan Observation and Research Platform (TORP) (BJ, NADORS, SETORS, QOMS, NAMORS, and Shuang-

Hu (SH), Ma et al., 2020), and the Heihe Water Watershed Allied Telemetry Experimental Research (HiWATER) 
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(Arou, Liu et al., 2011, 2018; Che et al., 2019) networks, were also evaluated and used to validate the modeled ET. 220 

The locations of these stations had three land cover types (grassland, alpine steppe, and Gobi). It should also be noted  

Table 2. Details of the nine flux observation stations. 

Sites Long., Lat. Land cover type Elevation (m) Availability Climate zone 

Shuang-Hu (SH) 88.83°E, 33.21°N Grassland 4947 2013–2018 Semi-arid 

BJ 91.90°E, 31.37°N Alpine steppe 4509 2010–2016 Semi-arid 

NADORS 79.60°E, 33.38°N Grassland 4264 2010–2018 Arid 

SETORS 94.73°E, 29.77°N Grassland 3326 2007–2018 Sub-humid 

QOMS 86.95°E, 28.35°N Gobi 4276 2007–2018 Semi-arid 

NAMORS 90.99°E, 30.77°N Grassland 4730 2008–2018 Semi-arid 

Arou 100.46°E, 38.05°N Grassland 3033 2008–2017 Sub-humid 

Dang-Xiong (DX) 91.06°E, 30.49°N Grassland 2957 2004–2010 Semi-arid 

Hai-Bei (HB) 101.32°E, 37.61°N Grassland 3190 2002–2010 Sub-humid 

that the energy balance closure ratio (ECR) means that the sum of sensible heat (H), latent heat (LE) and soil heat 

flux (G0) does not equal net radiation (Rn). Therefore, EC measurements should be screened and corrected 

beforehand. Half-hour LE data was corrected using Bowen ratio energy balance correction (Eq. (19)) (Chen et al., 225 

2014).  

 (18) 

 (19) 

To this end, the half-hourly LEcor data for all of the different sites were processed to produce daily and monthly 

averages, using a quality control procedure. The daily average values derived from valid numbers less than 80% of 

the half-hourly flux in one dataset were set as null values. Similarly, the monthly average values derived from 

numbers less than 80% of the daily data in each month were not used in the validation. 230 

2.3.2 Accuracy estimation 

The flux tower measurements (Gi) were compared with the estimates (Mi) to evaluate the performances of the 

model and product. The coefficient of determination (R2), mean bias (MB), root mean square error (RMSE), and 

index of agreement (IOA) were selected to assess the accuracy of the modeled ET. The equations for these parameters 
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are as follows:  235 

 （20） 

 （21） 

 （22） 

 （23） 

where  and  are the mean flux tower and simulated ET values, respectively, the subscript i denotes the ith 

sample, and n is the number of samples. The R2 value was calculated to evaluate the linear relationship between the 

modeled and observed ET. A higher R2 value indicates a higher correlation. The MB was used to assess whether the 

result was overestimated (positive MB values) or underestimated (negative MB values). The RMSE was used to 

evaluate the performance of the model. A smaller RMSE indicates a higher accuracy. The IOA quantifies the degree 240 

to which the simulated ET and flux tower are correlated to each other, with values between 0 and 1. 

3. Results 

3.1 Evaluation of ET products against flux tower measurements 

The reliability of the remote sensing-based ET estimates is questionable in the absence of verification using 

ground measurements. For every EC site on the TP, we extracted the simulated monthly ET rates of the 0.01° grid 245 

where the EC flux tower was located. The validation results for the monthly MOD16-STM ET obtained using the 

flux tower observational data are shown in Fig. 3. Compared to the ET observations, the modeled ET exhibited a 

good performance and high consistency over the TP. The grassland sites (SETORS, Arou, DX, and HB) performed 

well, with R2 and IOA values exceeding 0.82 and 0.95. The NAMORS site performed the poorest, with the highest 

RMSE (17.84 mm/month) and the lowest R2 and IOA (0.63 and 0.87, respectively). On average, the mean R2 and 250 

IOA values were greater than 0.83 and 0.93. The R2 values all passed the significance test at the p < 0.05 level. The 

mean |MB| and RMSE values were less than 3 mm/month and 14 mm/month. It should be noted that the fact that MB 

was greater than 0 revealed that the ET was overestimated, especially during the dry season over the barren land 

(QOMS, DX, SH, and NADORS) (Fig. 3). Fig. 4 shows the time series of the variations in the ET. In general, both 

the MOD16-STM ET and observed ET exhibited clear seasonal variation characteristics at the nine flux tower stations. 255 

Moreover, an annual periodic variation was observed at most stations. The site-scale validation demonstrates that the 

MOD16-STM ET has a satisfying accuracy in the TP region. 
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Figure 3 The validation of the MOD16-STM monthly ET at (a) SETORS, (b) Arou, (c) HB, (d) QOMS, (e) 

DX, (f) NAMORS, (g) BJ, (h) SH, (i) NADORS, and (j) all sites. 260 
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Figure 4 Time series variations in the MOD16-STM simulated ET and flux-tower-observed ET at (a) SETORS, (b) 

Arou, (c) HB, (d) QOMS, (e) DX, (f) NAMORS, (g) BJ, (h) SH, and (i) NADORS. 

 

 265 
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3.2 Spatial pattern of the multiyear averaged ET across TP 270 

Fig. 5 shows the spatial pattern of the multiyear (1982–2018) average ET and its three components across the 

TP. The ET decreased from southeast to northwest, with the maximum values exceeding 1000 mm/year on the 

southeastern Tibetan Plateau (the Heng-duan Mountains) and minimum values of less than 100 mm/year in the 

Qaidam Basin and northwestern TP. The spatial pattern of the annual ET was consistent with that of the aridity index 

(AI) (Fig. 1b), which is due to the combined effect of the atmospheric demand and water supply. The ET of the sub-275 

humid zone (32.9% of the TP) contributed the highest percentage (43% of the TP’s ET) compared to the other climate 

zones. The Es obviously dominated on the central and western TP, and its spatial distribution pattern was very similar 

to that of the ET. The spatial distributions of the Ec and Ew were consistent with the spatial distribution of the 

vegetation. The high Ec (>200 mm/year) and Ew (>50 mm/year) values were mainly concentrated in the densely 

vegetated areas of the Heng-duan Mountains on the southeastern TP. 280 

The multiyear-average ET in spring (March, April, and May), summer (June, July, and August), autumn 

(September, October, and November), and winter (December, January, and February) on the TP are shown in Fig. 6. 

The estimated ET seems to capture the general pattern of the seasonal cycles relatively well. The average ET was 

higher in spring than in autumn. The ET ranged from 20 to 250 mm in spring and from 20 to 150 mm in autumn. 

This is attributed to the fact that as the ground surface increases with increasing temperature in spring, more free 285 

surface water is generated via thawing of the permafrost and melting of snow and ice, which enhances the surface 

evaporation processes. In addition, vegetation transpiration increases during the growing season. In summer, the ET 

is greater than 200 mm over most of the TP, but the ET is still less than 100 mm in large areas of the northwestern 

TP. However, lower ET values were only observed in the densely vegetated southeastern region of the TP in winter 

due to the lower amount of available water (precipitation) and lower Ta throughout the entire TP. 290 

The multi-year average land surface ET over the TP was 346.5 ± 13.2 mm/year (mean ± standard deviation, the 

latter represents the interannual variability) (about 0.88 ± 0.034 Gt/year), with Es equal to 292.36 ± 10.39 mm/year 

(0.74 ± 0.027 Gt/year), Ec equal to 47.85 ± 3.34 mm/year (0.12 ± 0.006 Gt/year), and Ew equal to 7.07 ± 2.89 mm/year 

(0.02 ± 0.001 Gt/year). The multi-year mean annual Es accounted for the majority of the ET on the TP (more than 

84%). Wang et al. (2020) accurately calculated the amount of water evaporated from all of the plateau lakes, i.e., 295 

0.0517 Gt/year. Thus, the average annual water evaporated on the entire TP was calculated using the area-weighted 

average of about 0.93 ± 0.037 Gt/year. About 53% of the precipitation on the Tibetan Plateau (according to the ERA5-

Land precipitation data, the average annual rainfall on the TP is about 1.8 × 103 Gt/year) returns to the atmosphere 

through ET. The multiyear seasonal ET averaged over the entire TP is 90.79 ± 3.16 mm/year (0.23 ± 0.0081 Gt/year), 
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152.05 ± 8.44 mm/year (0.38 ± 0.021 Gt/year), 71.96 ± 2.86 mm/year (0.18 ± 0.0074 Gt/year), and 30.54 ± 1.85 300 

mm/year (0.077 ± 0.0047 Gt/year) in spring, summer, autumn, and winter, respectively. 

 
Figure 5 Spatial pattern of the multiyear (1982–2018) mean annual (a) ET, (b) Es, (c) Ec, and (d) Ew across the 

Tibetan Plateau. 

 305 

Figure 6 Spatial distributions of the multiyear (1982–2016) mean seasonal ET in (a) Spring, (b) Summer, (c) 

Autumn, and (d) Winter across the Tibetan Plateau. 
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3.3 Temporal variations in ET across TP 

Quantifying the inter- and intra-annual variations in the land surface energy variables is important in studying 

monsoon phenomena and climate change. Fig. 7 shows the spatial patterns of the annual ET and its components, as 310 

well as their rates, during 1982–2018 across the TP. The trends of the ET are spatially heterogeneous over the TP. 

The annual ET significantly increased, with rates of about 1–4 mm/year (p < 0.05), over most parts of the central and 

eastern TP, accounting for more than 86% of the TP. However, it significantly decreased, with rates of −3 to −1 

mm/year, on the northwestern TP. In addition, the Es rates exhibited a spatial distribution similar to that of the ET, 

and the increasing trends had lower magnitudes (1–3 mm/year, p < 0.05). Both the Ec and Ew exhibited slightly 315 

increasing trends of 0–2 mm/year (p < 0.05). Averaged across the entire TP, the ET, Es, and Ec increased significantly 

during 1982–2018, with rates of 0.96 mm/year, 0.64 mm/year, and 0.44 mm/year, respectively (p < 0.05; Fig. 8). 

Regarding the seasonality, the seasonal ET trends were positive and significant in all of the seasons (Fig. 8). The 

strongest trends occurred in summer (0.46 mm/year). In addition, the multi-source ET products indicate that most of 

the regions of the TP exhibited consistent ET changes over the past 30 years (Yin et al., 2013; Peng et al., 2016; 320 

Wang et al., 2018; Ma et al., 2019; Wang et al., 2020; Li et al., 2021; Ma et al., 2022). 

  

Figure 7 Spatial patterns of the trends (1982–2018) of the annual (a) ET, (b) Es, (c) Ec, and (d) Ew across the 

Tibetan Plateau. The stippling on the maps indicates the trends that are statistically significant (p<0.05). 
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 325 

Figure 8 Time series of the (a) annual anomalies in the ET and its components and (b) seasonal anomalies in the 

ET and their least squares fitted linear trend. 

The increase in the ET over the entire TP from 1982 to 2018 can be explained by the warming and wetting of 

the climate on the TP during this period. Since the 1980s, the TP has experienced overall greening, warming, and 

wetting and increased precipitation (Fig. 9). The ET has continuously increase in the past 40 years, while the changes 330 

in the climate factors shifted significantly in the middle of this time period (around 2000). From 1982 to 2000, the 

ET continuously increase, the wind speed rapidly decreased, and did not change the Rn significantly. There was a 

rapid decrease in the Rn and no significant change in the wind speed from 2000 to 2018, while the ET continued to 

increase during this period. Therefore, the Rn and wind speed were not the dominant factors controlling the annual 

variations in the ET. The significant increases in the Ta, SM, and precipitation were accompanied by greening of the 335 

land surface in the last two decades. Together, these factors led to an increase in the ET. In the following ten years, 

only the significant growth of the SM controlled the growth of the ET. 

In general, the increase in ET over the TP was due to the increase in the available surface water during the entire 

study period. There is also evidence that an overall increase in precipitation occurred across the TP. The combined 

effect of the warming and vegetation greening led to further opening of the vegetation stomata. The more favorable 340 

vegetation conditions explain the increase in the vegetation transpiration. The warming of the land surface and 

increased wind speeds led to more efficient turbulent water exchange between the land and atmosphere. In addition, 

the warming accelerated the melting of the permafrost and glaciers on the TP. Due to the wetting of the surface and 
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the thickening of the active soil layer, water could be transported more easily from the lower layer to the upper soil 

layer. 345 

 
Figure 9 Time series of the annual anomalies in the (a) NDVI, (b) Ta, (c) Rn, (d) u, (e) SM, and (f) Precipitation 

and their least squares fitted linear trends for different time periods. 
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3.4 comparison of the MOD16-STM product to other ET product over the TP 

The MOD16-STM ET had a relatively good performance on the TP overall, with an average R2 value of 0.83 350 

and an average RMSE of 13.48 mm/month. These results are close to those obtained in other studies. Wang et al. 

(2018) evaluated the performance of the use of a modified PML model for ET estimation (PML-Wang) based on flux 

tower observation data for the TP. Their results yielded R2 values of >0.85 and RMSE values of <0.006 mm/day. The 

spatially averaged ET during 1982–2012 was 378.1 mm/year. Wang et al. (2020) evaluated the performance of the 

generalized nonlinear complementary principle for ET estimation (CR-Wang) based on flux tower observation data 355 

for the TP. Their results showed that the R2 increased from 0.87 to 0.93, and the RMSE decreased from 0.53 to 0.40 

mm/day. The spatially averaged ET during 1982–2014 was 398.3 mm/year. Han et al. (2021) used an algorithm for 

the effective aerodynamic roughness length of the parameterize sub-grid-scale topographic form drag coupled with 

the SEBS model to improve the skill of estimating the surface energy budget in the mountainous regions of the TP, 

and they estimated the ET (Han-ET) for the entire TP from 2001 to 2018. They found that the modeled value was 360 

very consistent with the in situ measured value (R2 > 0.81, RMSE < 14.5 mm/month), but their value was slightly 

lower than that obtained in this study. In addition, the average annual ET (496 ± 23 mm) on the TP that they obtained 

was also higher than that obtained in this study (346.5 ± 13.2 mm). This discrepancy is mainly due to the different 

models and time periods of the two studies. Ma et al. (2022) used PML_V2 to estimate the ET (PML-Ma) on the TP, 

and their R2 and RMSE values varied from 0.4 to 0.9 and from 0.3 to 0.8 mm/day, respectively. The 35-year mean 365 

annual ET rates led to an average value of 353 ± 24 mm/year for the entire TP. Soil evaporation is the main component 

(64%) of the ET. The main reason this ratio is inconsistent with the results of this study is because of the differences 

in the land cover classification. The land cover of the MODIS largely classifies the land surface of the northwestern 

TP as bare soil, which leads to an increase in the proportion of soil evaporation. 

4. Discussion 370 

4.1 Evaporated water across the TP 

Yao et al. (2013) estimated the ET (PT-Yao) in China using a satellite-driven modified Priestley–Taylor 

algorithm, which is constrained by the NDVI and the apparent thermal inertia derived from the temperature changes 

over time, and they reported that the mean annual ET on the TP was about 320 mm/year. Song et al. (2017) estimated 

TP’s ET (PM-Song) using the improved Penman–Monteith method and meteorological and satellite remote sensing 375 

data with a spatial resolution of 1 km during 2000–2010, and they concluded that the average annual ET on the TP 

was 350.3 mm/year. In addition to this, the 18 mean annual ET values on the TP estimated using existing multi-source 

ET products (PML-Zhang (Zhang et al., 2019b), EB-ET (Chen et., 2019, 2021), CR-Ma (Ma et al., 2019), CMIP6-
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ssp126 (Eyring et al., 2016), GLDAS-Noah (Rodell et al., 2004), GLASS (Liang et al., 2021), GLEAM-v3.5b 

(Miralles et al., 2011), and ERAR-Land (Muñoz-Sabater et al., 2021)) and previous research results (MTE (Jung et 380 

al., 2010), PM-Li (Li et al., 2014a), LPJ-Yin (Yin et al., 2013)) are listed in Table 3 and shown in Fig. 10. The results 

show the large differences in the estimated mean annual ET values for the TP. The Han-ET, ERA5-Land, and CMIP6 

produced the highest values (>400 mm/year), while the LPJ-Yin, GLASS, EB-ET, GLDAS, and GLEAM values 

were less than 300 mm/year. The differences in these results are partially caused by objective factors such as the 

inaccuracy of the input data and the limitations of the validation methods. In addition, the subjective factor of the 385 

algorithm's flaws led to additional biases. The medium value of the annual ET from an ensemble of datasets is 348.6 

mm/year. This is the closest to the result (346.5 mm/year) estimated in this study using the MOD16-STM model. 

Overall, the MOD16-STM ET exhibited acceptable performance on the TP, which was demonstrated by the above 

comparison with previous studies. 

 390 

Figure 10 (a) (a) The annual mean ET values of 18 datasets. The x-axis is the time coverage of the ET datasets, and 

the y-axis is the multi-year mean value. (b) The bars denote the mean values and variations of the annual ET. 

 

 

 395 
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Table 3 Annual mean evapotranspiration values and trends for regions of the Tibetan Plateau. 

Dataset Method Period Length (year) Mean ET (mm) ET trend (mm/year) Reference 

PT-Yao 
Modified Priestley 
−Taylor model 2001-2010 10 320.0 -0.14 Yao et al. (2013) 

PM-Song Penman-Monteith 
(PM) method 

2000-2010 11 350.3 -4.69 Song et al. (2017) 

PML-Zhang 
Penman-Monteith-

Leuning (PML) 
model 

2002-2018 17 369.2 5.01 Zhang et al. (2019b) 

EB-ET Energy balance 
model 

2000-2017 18 274.6 -1.66 Chen et al.(2019, 2021) 

Han-ET Energy balance 
model 

2001-2018 18 492.1 -1.52 Han et al. (2021) 

MTE Model tree 
Ensembles 

1982-2008 27 350.0 / Jung et al. (2010) 

PM-Li Penman-Monteith 
 (PM) model 

1982-2009 28 345.0 / Li et al. (2014a) 

LPJ-Yin 
Lund-Potsdam-Jena 
dynamic vegetation 

model 
1981-2010 30 255.8 0.08 Yin et al. (2013) 

PML-Wang 
Penman-Monteith-

Leuning (PML) 
model 

1982-2012 31 378.1 / Wang et al. (2018) 

PML-Ma 
Penman-Monteith-

Leuning (PML) 
model 

1982-2016 35 353 1.87 Ma et al. (2022) 

CR-Wang 
C-R 

(complementary 
relationship) model 

1982-2014 32 398.3 0.77 Wang et al. (2020) 

CR-Ma 
C-R 

(complementary 
relationship) model 

1982-2017 36 338.4 0.82 Ma et al. (2019) 

CMIP6-ssp126 Global climate 
model  

1982-2018 37 456.6 0.48 Eyring et al. (2016) 

GLDAS-Noah Land surface data 
assimilation 

1982-2018 37 295.4 1.10 Rodell et al. (2004) 

MOD16-STM 
Penman-Monteith 

(PM) method 1982-2018 37 346.5 0.96 In this study 

GLASS Empirical method 1981-2018 38 253.2 0.53 Liang et al. (2021) 

GLEAM-v3.5b 
Microwave remote 

sensing data 
assimilation  

1980-2018 39 269.7 0.94 Miralles et al. (2011) 

ERA5-Land Reanalysis 1981-2020 40 432.7 0.68 Muñoz-Sabater et al. (2021) 

Medium-ET / / / 348.6 / / 

4.2 Errors caused by objective factors 

The MOD16-STM and other models use remote sensing data and reanalysis data as the main input data. However, 400 

the accuracy of these data is somewhat uncertain (Ramoelo et al., 2014). For instance, the topsoil water content is a 

critical radiative parameter; however, complex algorithm-led reanalysis data SM products can contain errors. Liu 

et al. (2021) reported that the long-term GLEAM SM product based on a satellite-based input dataset yields limited 

improvement in its SM outputs and the data assimilation model does not perform well. Furthermore, as a fundamental 

parameter in the calculation of the surface energy balance, the LST affects the estimation of the ET to a great extent 405 
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(Long et al., 2011). In this study, we used an NDVI threshold to divide the bare soil evaporation and mixed pixel ET, 

which largely overestimated the soil evaporation. The mismatch in the underlying surface heterogeneity and the 

spatial resolution of the flux column of the MOD16-STM ET can also lead to errors. In general, the flux towers 

covered areas ranging from a few hundred square meters to several square kilometers, depending on the height of the 

observation instrument, the turbulence intensity, topography, environment, and vegetation conditions. Although site 410 

evaluations of the MOD16-STM ET were performed in this study, the uncertainties arising from the limited number 

of validation sites should be noted, and validation with different land cover types, climate zones, elevations, and 

seasons should be considered. 

5. Conclusion 

In this study, we developed a 37-year (1982–2018) monthly ET dataset with a 0.01° spatial resolution for the 415 

TP using the newly developed MOD16-STM model coupled with soil information to investigate the spatial 

distribution and temporal trends of the ET on the TP. Although previous studies have been conducted on the ET 

climatology on the TP (Peng et al., 2016; Wang et al., 2018; Ma et al., 2019; Wang et al., 2020; Li et al., 2021; Han 

et al., 2021; Ma et al., 2022), this is also a suitable ET database for use in climate studies covering the full study area 

with a high spatial resolution and a long time period. Our main findings are summarized below. 420 

1. The ET product generated using MOD16-STM exhibited a good performance on the TP. Compared to the 

flux tower observation data, the R2 and IOA values of the modeled ET reached 0.83 and 0.93 for 782 samples, 

and the RMSE was 13.48 mm/month. MOD16-STM overestimated the ET overall, with an MB of 

2.58 mm/month. The MOD16-STM ET product can adequately represent the actual ET and can be used in 

research in water resource management, drought monitoring, and ecological change. 425 

2. The combined effect of the atmospheric demand and water supply resulted in spatial heterogeneity of the 

ET and the changes in the ET. The annual ET generally decreased from southeast to northwest on the TP. 

The Es accounted for more than 84% of the annual ET. The estimated multiyear (1982–2018) mean annual 

ET on the TP was 346.5±13.2 mm, resulting in approximately 0.93 ± 0.037 Gt/year of total water 

evapotranspiration from the entire TP. 430 

3. The ET exhibited a significant increasing trend, with rates of about 1 to 4 mm/year (p<0.05), over most parts 

of the central and eastern TP and a significant decreasing trend, with rates of −3 to −1 mm/year, on the 

northwestern TP. Averaged across the entire TP, the ET increased significantly during 1982–2018, with a 

rate of 0.96 mm/year. The increase in the ET over the entire TP from 1982 to 2018 can be explained by the 

warming and wetting of the climate during this period. 435 
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The MOD16-STM ET product exhibited a high degree of agreement with the results of the latest studies of the 

ET on the TP, and our results have a longer time series and higher spatial and temporal resolutions. However, there 

are still large errors at the point scale. The MOD16-STM algorithm has a great dependence on higher-precision soil 

moisture products. In this study, the empirical coefficients for the different soil textures were redefined, and the 

influence of the physical processes of deeper soil water and heat transfer on the resistance should be considered in 440 

the future. Thus, the improvements of the MOD16-STM algorithm will be the focus of future research. In addition, 

most areas of the TP are covered by permafrost and seasonally frozen soil. In particular, during the seasonal freeze-

thaw period, it is difficult to grasp the dry and wet conditions of the surface. Therefore, it is necessary to use relevant 

models and observations to study the characteristics of the ET during the soil freeze-thaw period to verify the 

applicability of the model to the study of ET on the TP. 445 
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Author contributions 

YMM, LY, and XLC led the writing of this paper and acknowledge responsibility for the experimental data and 

results. LY and YMM drafted the paper, and LY led the consolidation of the input and simulation dataset. This paper 455 

was written in cooperation with all of the co-authors. 

 

Declaration of Competing Interest 

The authors declare that they have no known competing financial interests or personal relationships that could 

have appeared to influence the work reported in this paper. 460 

 

Acknowledgments 

We are grateful for the datasets provided by the China-Flux (http://www.chinaflux.org/), Ameri-Flux 

(https://ameriflux.lbl.gov/), GHG-Europe (http://www.europe-fluxdata.eu/ghg-europe), the National Tibetan Plateau 

Data Center (https://data.tpdc.ac.cn/zh-hans/data), the European Centre for Medium-Range Weather Forecasts 465 

24

https://doi.org/10.5194/essd-2022-195
Preprint. Discussion started: 3 August 2022
c© Author(s) 2022. CC BY 4.0 License.



(ECWMF) (https://www.ecmwf.int/), NOAA-NCEI (https://www.ncei.noaa.gov/products/climate-data-

records/normalized-difference-vegetation), the Global Land Evaporation Amsterdam Model (https://www.gleam.eu/), 

and the National Earth System Science Data Sharing Infrastructure (http://glass-product.bnu.edu.cn/). The authors 

would like to thank all of their colleagues at the observation stations on the TP for their maintenance of the 

instruments. 470 

 

Financial support 

This study was funded by the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program 

(2019QZKK0103 and 2019QZKK0105), the Strategic Priority Research Program of the Chinese Academy of 

Sciences (XDA20060101), the National Natural Science Foundation of China (91837208, 41975009, and 91637312), 475 

and the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (QYZDJ-SSW-DQC019). 

 

 

 

 480 

 

 

 

 

 485 

 

 

 

 

 490 

 

 

 

 

 495 

25

https://doi.org/10.5194/essd-2022-195
Preprint. Discussion started: 3 August 2022
c© Author(s) 2022. CC BY 4.0 License.



Appendix A: MOD16-STM Parameterization and Validation 

Table A1. Basic Information about the five test sites and 12 verification sites. 
 Site Lat; lon Land cover θ (cm) fsand fclay 

 
msoc (%) θsat Soil Texture Reference 

 

 

 

 

 

Test Sites 

IT-Cas 45.07; 8.71 CRO 5 0.28 0.29 2.6 / Clay loam Denef et al. (2013) 

US-IHO 36.47; 100.62 Bare 5 0.58 0.28 / 0.53 Sandy Clay Loam Lemone et al. (2007) 

US-Arm 36.61; -97.49 CRO 5 0.28 0.43 1.5 / Clay Fischer et al. (2007) 

CH-Oe2 47.29; 7.73 CRO 5 0.095 0.43 2.8 / Silty Clay Alaoui and Goetz (2008) 

US-IB2 41.84; -88.24 GRA 0~15 0.106 0.29 2.4 / Silty clay Loam / 

 

 

 

 

 

 

Independent 

verification 

 sites 

US-Dk1 35.97; -79.09 GRA 10 0.48 0.09 / 0.52 Loam Novick et al. (2004) 

US-Fwf 35.45; -111.77 GRA 5 0.30 0.13 3.2 / Silt Loam Dore et al. (2012) 

US-Wkg 31.74; -109.94 GRA 5 0.67 0.17 1.0 / Sandy Loam Ameri-Flux 

CA-Obs 53.98; -105.11 ENF 5 0.72 0.05 4.3 / Sandy Loam Ameri-Flux 

CA-Ojp 53.91; -104.69 ENF 5 0.94 0.03 2.5 / Sand Ameri-Flux 

CA-Ca2 49.87; -125.29 ENF 5 0.74 0.03 3.0 / Loamy Sand Ameri-Flux 

CA-Ca3 49.53; -124.90 ENF 5 0.39 0.20 4.9 / Loam Ameri-Flux 

US-Dk3 35.97; -79.09 ENF 5 0.25 0.34 2.4 / Silt Loam Ameri-Flux 

US-Fuf 35.08; -111.76 ENF 5 0.31 0.35 3.9 / Clay Loam Ameri-Flux 

US-Ib1 41.86; -88.22 CRO 2.5 0.10 0.35 1.8 / Silty clay Loam Denef et al. (2013) 

ES-ES2 39.28; -0.32 CRO 5 0.11 0.47 3.7 / Silty Clay Kutsch et al. (2010) 

IT-Bci 40.52; 14.96 CRO 5 0.32 0.46 1.5 / Clay Denef et al. (2013) 

 

Figure A1 Soil surface resistance (rs
s) related to the topsoil SM measured for the different soil textures (θsat): sandy 

loam (QOMS), sandy (NAMOR), loamy sand (NASDE), silt loam (Arou), loam (Maqu), clay Loam (IT-Cas), 500 

sandy clay loam (US-IHO), clay (US-Arm), silty clay (CH-Oe2), and silty clay loam (US-Ib2). 
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Table A2 Equation coefficient values for the surface soil resistances from the regressions between these resistances 

and the SM for the different soil textures (θsat). 

Texture 
 

R2 

a b 

Sandy Loam 7.65 -7.3 0.48 

Sand 5.89 -8.17 0.52 

Loamy Sand 8.02 -17.37 0.34 

Silt Loam 7.09 -3.79 0.54 

Loam 6.82 -4.33 0.64 

Clay Loam 10.17 -7.43 0.46 

Sandy Clay Loam 9.46 -4.52 0.48 

Clay 10.02 -6.68 0.49 

Silty Clay 11.67 -7.25 0.64 

Silty Clay Loam 8.93 -9.14 0.46 

 

Figure A2 Time-series comparisons of the ET estimated using the MOD16-STM model and the daily flux tower 505 

observations in the grassland (US-DK1, US-Fwf, and US-Wkg), cropland (US-IB1, ES-ES2, and IT-Bci), and 

evergreen forest (CA-Obs, CA-Ojp, CA-Ca2, CA-Ca3, US-DK3, and US-Fuf) ecosystems. 

exps
s
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Table A3. Statistical comparison of the daily ET (mm/day) estimated using the MOD16-STM model and daily flux 

tower observation data. 

 Sites R2 (p<0.05) IOA |MB| RMSE 

 

Grassland 

US-DK1 0.71 0.91 0.27 0.74 

US-Fwf 0.59 0.84 0.06 0.55 

US-Wkg 0.69 0.84 0.005 0.58 

 

 

Evergreen 

Forest 

CA-Obs 0.88 0.96 0.05 0.33 

CA-Ojp 0.79 0.93 0.11 0.38 

CA-Ca2 0.77 0.92 0.23 0.49 

CA-Ca3 0.79 0.94 0.02 0.44 

US-Dk3 0.79 0.92 0.51 0.87 

US-Fuf 0.58 0.81 0.33 0.66 

 

Cropland 

US-Ib1 0.65 0.88 0.39 1.08 

ES-ES2 0.87 0.91 0.04 0.94 

IT-Bci 0.41 0.76 0.14 1.14 

Mean / 0.72 0.89 0.18 0.68 

 510 

 

 

 

 

 515 

 

 

 

 

 520 
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